Chapitre 15: Relations de comparaison

Comparaison de suites

Exercice 1: Classer par ordre de négligeabilité les suites de termes généraux suivants : $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{\ln(n)}{n}$, $\frac{\ln(n)}{n^2}$, $\frac{1}{n\ln(n)}$

<u>Exercice 2</u>: Déterminer un équivalent simple des suites de termes généraux suivants :

1.
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

4.
$$u_n = \left(1 + \frac{1}{n}\right) (n + \ln(n))^2$$

2.
$$u_n = \sqrt{n+1} - \sqrt{n-1}$$

$$5. \ u_n = \frac{\ln(n) + n}{n + \sqrt{n}}$$

3.
$$u_n = \ln(n+1) - \ln(n)$$

$$6. \ u_n = \tan\left(\frac{1}{n}\right) - \frac{1}{n^2}$$

Exercice 3: Déterminer le comportement en $+\infty$ des suites de termes généraux suivants :

$$1. \ u_n = \left(1 + \frac{1}{n}\right)^n$$

3.
$$u_n = \frac{n^2 + \cos(n)}{2^n + \sin(n)}$$

2.
$$u_n = \left(\frac{n^2 - n + 1}{n^2 + n + 1}\right)^n$$

$$4. \ u_n = \frac{n!}{n^{2n}}$$

Exercice 4: Composer des équivalents

- 1. Soient (u_n) et (w_n) deux suites équivalentes. Déterminer une condition nécessaire et suffisante pour que les suites (\mathbf{e}^{u_n}) et (\mathbf{e}^{w_n}) soient équivalentes.
- 2. Soient (u_n) et (w_n) deux suites équivalentes, à termes strictement positifs, et de limite commune $\ell \neq 1$. Montrer que $\ln(u_n) \sim \ln(w_n)$.
- 3. En déduire un équivalent en $+\infty$ de $\ln\left(\sin\left(\frac{1}{n+1}\right)\right)$.

Exercice 5: Additionner des équivalents

Soient (u_n) , (w_n) , (s_n) et (t_n) quatre suites de réels strictement positifs tels que $u_n \sim w_n$ et $s_n \sim t_n$.

Montrer que $u_n + s_n \sim w_n + t_n$.

Exercice 6: Soit $a \in]1, +\infty[$. Pour tout $n \in \mathbb{N}$, notons $u_n = \frac{a^n}{n!}$.

- 1. Montrer qu'il existe $N \in \mathbb{N}$, tel que pour tout $n \ge N$, $u_{n+1} \le \frac{1}{2}u_n$.
- 2. En déduire que $a^n = o(n!)$.

Comparaison de fonctions

Exercice 7: Soif $f: x \mapsto \frac{x^2 + 2x}{2x - 1}$.

- 1. Déterminer un équivalent simple de f en $+\infty$. On le note u.
- 2. Déterminer un équivalent simple de f u en $+\infty$.
- 3. En déduire que la courbe de f admet une asymptote affine en $+\infty$.

Exercice 8:

Déterminer les équivalents des fonctions suivantes au point souhaité :

- 1. $f: x \mapsto x + 1 + \ln(x)$ en $+\infty$.
- 3. $f: x \mapsto \operatorname{ch}(\sqrt{x})$ en $+\infty$.
- 2. $f: x \mapsto \cos(\sin(x))$ en 0.
- 4. $f: x \mapsto \frac{\sin(x)\ln(1+x^2)}{x\tan(x)}$ en 0.

Exercice 9: [*] Avec une astuce d'écriture

Déterminer les équivalents des fonctions suivantes au point souhaité :

- 1. $f: x \mapsto \ln(\sin(x))$ en 0^+ .
- 2. $f: x \mapsto \ln(\cos(x))$ en 0.

Chapitre 15 : Relations de comparaison

Exercice 10: Soient $f, g : \mathbb{R} \to \mathbb{R}$ telles que $\lim_{x \to +\infty} f(x) = +\infty$.

- 1. Montrer que si g(x) = o(f(x)) alors $\exp(g(x)) = o(\exp(f(x)))$.
- 2. Que pensez-vous de la réciproque ?
- 3. Comparer $f: x \mapsto (\ln(\ln(x)))^{x^{\ln(x)}}$ et $g: x \mapsto (\ln(x))^{x^{\ln(\ln(x))}}$ au voisinage de $+\infty$.

Applications des équivalents

Exercice 11:

Étudier la limite en 0 des fonctions :

1.
$$f: x \mapsto \frac{(1 - \cos(x))(1 + 2x)}{x^2 - x^4}$$
.

2.
$$g: x \mapsto \frac{\ln(1+\sin(x))}{\tan(6x)}$$
.

3.
$$h: x \mapsto x(3+x) \frac{\sqrt{3+x}}{\sqrt{x}\sin(\sqrt{x})}$$
.

4.
$$k: x \mapsto \left(\frac{x}{\sin(x)}\right)^{\frac{\sin(x)}{x-\sin(x)}}$$

Exercice 12: Étudier la limite en $\frac{\pi}{2}$ de $x \mapsto \frac{\ln(\sin^2(x))}{\left(\frac{\pi}{2} - x\right)^2}$.

Exercice 13:

Montrer que $f: x \mapsto (1+x)^{\frac{1}{x}}$ est prolongeable par continuité en 0.

Exercice 14:

Étudier la dérivabilité des fonctions $f: x \mapsto \sin(\sqrt{x})$ et $g: x \mapsto \cos(\sqrt{x})$.